Your Perfect Assignment is Just a Click Away

Starting at $8.00 per Page

100% Original, Plagiarism Free, Customized to Your instructions!

glass
pen
clip
papers
heaphones

PowerPoint (418) (1)

PowerPoint (418) (1)

 

Multimedia Presentation In this assignment, you will create a correctable code for a list of key words. Your task is to create an efficient, correctable code for a list that contains at least 6 key words. The words in your code will be represented as binary strings using only 0’s and 1’s. Stringent correctability requirements mean your code must have a minimum distance of 3.

– First, watch the following two videos, then read the following information to understand the definitions for bit, binary word, code, codewords, Hamming distance, and minimum distance of a code:

Video 1: Parity Checksums

Video 2: Hamming distance

Consider a sequence of 0’s and 1’s of length n.  This can be represented by an n-tuple of 0’s and 1’s such as (1,0,1,1) if n=4.  If V={0,1}, then we can form the product of V with itself n times and denote it by Vn.  So Vn={(a1, a2, …, an)|ai?{0,1}}. Vn consists of all possible binary words of length n.  We can define a metric on Vn called the Hamming distance dH as follows:

For binary words x and y of length n, dH(x, y) is the number of places in which x and y differ.

Given this metric, Vn is now a metric space, and the topology induced by this metric is the discrete topology on Vn since the topology induced by a metric on a finite set is the discrete topology, and Vn is finite. 

To send a message using binary words, not all of Vn will be used; rather, only a subset of Vn will be used.  A subset C of Vn is called a code of length n, and the binary words in C are called codewords.  The smallest Hamming distance between any two codewords in C is called the minimum distance of the code C.

It turns out that, if a code C of length n is designed so that the minimum distance of C is d, then any binary word that had up to d-1 errors can be detected.  Furthermore, any binary word that had floor((d?1)/2) or fewer errors can be corrected. [Here, floor is the floor function; for example, floor(3.6)=3 and floor(8)=8.]

Now, you’re ready to create your correctable code. – Create a code consisting of binary codewords. – The code must meet three requirements   — Contain at least 6 codewords   — Have a minimum distance of 3 (explain why a min distance of 4 is no better than 3)   — Maintain efficiency by using the fewest number of bits per codeword as possible – Clearly document and describe your code: what it is, why you chose it, etc. – Discuss how topology relates to the selection of your code and the Hamming metric

A few notes about format: use MS PowerPoint for your presentation; develop a presentation that is 10-15 slides in length; incorporate audio files into your presentation in order to explain your work; use Equation Editor for all mathematical symbols, e.g. x ? X or Cl(A) ? Cl(X-A); and select fonts, backgrounds, etc. to make your presentation look professional.  

Course and Learning Objectives This Writing Assignment supports the following Course and Learning objectives: CO-4 Determine if a topological space is a metric space and generate a topology from a metric. LO-13: Understand the definitions of a metric and metric space. LO-14: Develop a topology from a metric. 


"Place your order now for a similar assignment and have exceptional work written by our team of experts, guaranteeing you A results."

Order Solution Now

Our Service Charter


1. Professional & Expert Writers: Eminence Papers only hires the best. Our writers are specially selected and recruited, after which they undergo further training to perfect their skills for specialization purposes. Moreover, our writers are holders of masters and Ph.D. degrees. They have impressive academic records, besides being native English speakers.

2. Top Quality Papers: Our customers are always guaranteed of papers that exceed their expectations. All our writers have +5 years of experience. This implies that all papers are written by individuals who are experts in their fields. In addition, the quality team reviews all the papers before sending them to the customers.

3. Plagiarism-Free Papers: All papers provided by Eminence Papers are written from scratch. Appropriate referencing and citation of key information are followed. Plagiarism checkers are used by the Quality assurance team and our editors just to double-check that there are no instances of plagiarism.

4. Timely Delivery: Time wasted is equivalent to a failed dedication and commitment. Eminence Papers are known for the timely delivery of any pending customer orders. Customers are well informed of the progress of their papers to ensure they keep track of what the writer is providing before the final draft is sent for grading.

5. Affordable Prices: Our prices are fairly structured to fit in all groups. Any customer willing to place their assignments with us can do so at very affordable prices. In addition, our customers enjoy regular discounts and bonuses.

6. 24/7 Customer Support: At Eminence Papers, we have put in place a team of experts who answer all customer inquiries promptly. The best part is the ever-availability of the team. Customers can make inquiries anytime.